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Overview and Basic Concepts 



Unimodal Function Multimodal Function 

Initial Guess / Starting Point 

Local and Global Optimum 

Initial Guess / Starting Point 

Local Optimum 
Global Optimum 

X X 

F(X) F(X) 

No Algorithm Can Guarantee to Locate Global Optimum for Multimodal Functions. 

Gradient Based Algorithms Can Guarantee to Locate Local Optimum. 

Zero Order Methods Can only Locate a Good Solution which may not even be a Local Optimum.  

Basic Premise 



Stochastic Population Based Algorithms 

1. Generate a set of M solutions. 

2. Identify better solutions as parents. 

3. Combine the parents to create M child solutions. 

4. Combine the original set of solutions (M) and child solutions 
(M). 

5. Select M solutions from the above set of 2M solutions. 

6. Repeat steps 2-4 till convergence condition is true. 

  

 

Progress Plot Visualization 



Multiobjective Optimization 

 Minimization and Maximization problems are interchangeable. 

 All discussions are in the context of minimization. 

 In Multio-bjective optimization, the interest is to find the non-dominated 
set of solutions that are close to the Pareto optimal set. 

 The ND set of solutions should have a good convergence and a good 
spread. 

 The solutions in blue are Non-dominated solutions. The solutions in red are 
dominated solutions. 

 Designers are interested in identifying multiple optima. 
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Constraint Constraint 

Notice that the 
Design Shifted 
away from the 
Constraint 
Boundary 

Robust Design 

Best Performance Design 

Basic Premise 



Constrained Optimization  



Constraints and their Effects 

• Solutions to constrained optimization problems often lie on constraint boundaries. 

• Most real coded population based stochastic algorithms intrinsically prefer a feasible solution over another. 

• Proposed Infeasibility Driven Evolutionary Algorithm IDEA). 

Real coded EA Preserving Infeasible Solutions Disconnected Feasible Regions 

• Explicitly preserves a fraction of infeasible solutions across generations. 

• Marginally infeasible solutions are preferred over feasible solutions. 

• Offers a trade-off set of solutions with minimal constraint violation in addition to the set of feasible solutions.  



Infeasibility preservation 
– Parameter α determines the ratio of infeasible solutions in the population 

 
Optimization problem reformulation 

– Constrained, k objectives  Unconstrained, k+1 objectives 
– Additional objective = constraint violation measure 

 
Rank “good” infeasible solutions higher than feasible solutions 

– Active search through feasible as well as infeasible design space 

Infeasibility Driven Evolutionary Algorithm (IDEA) 

 All solutions in the population are assigned a rank corresponding to each constraint. 
 

 Solutions that do not violate a particular constraint are assigned rank 0 for that constraint. 
 

 Rest of the solutions are assigned ranks in increasing order of constraint violation. 
 

 Violation measure for a solution is calculated as the sum of individual ranks corresponding to all constraints. 



 
Soln. 

Violation Value Relative Ranks Violation 
measure 

C1 C2 C3 C1 C2 C3 

1 3.50 90.60 8.09 3  7  7 17 

2 5.76 7.80 6.70 4  5  5 14 

3 - 3.40 7.10 0 3 6 9 

4 1.25 - 0.69 1  0  1  2 

5 13.75 90.10 5.87 6 6 4 16 

6 100.70 2.34 3.20 7  2 2 11 

7 - 5.09 4.76 0 4 3 7 

8 1.90 - - 2  0  0 2 

9 - 110.56 - 0 8 0 8 

10 8.90 2.30 9.80 5  1  8 14 

Infeasibility Driven Evolutionary Algorithm (IDEA) 



• Binary tournament based Parent selection 
• Crossover and Mutation to create offspring 

population 
• Non-dominated sorting (feasible and 

infeasible) 
• Elite preservation (retain infeasible) 

 
 

• Take note the infeasible solutions are on the 
top. 

• Can only work if there are infeasible 
solutions, else its identical to a real coded 
elitist GA. 

• Three possibilities of a population state is 
presented at the bottom. 

⊕ = 

+ 

Infeasibility Driven Evolutionary Algorithm (IDEA) 



Performance of IDEA 

• Behaviour of IDEA on multi-objective optimization problems. 

Real coded EA IDEA 

Ray, T., Singh, H.K., Isaacs, A., and Smith, W.  Infeasibility Driven Evolutionary Algorithm for Constrained 
Optimization, Constraint-Handling in Evolutionary Optimization, Studies in Computational Intelligence 
Series 198, Eds, Efrén Mezura-Montes, Springer. pp 145-165., 2009. 

Singh, H.K. , Ray, T. and Sarker, R. ,“Optimum oil production planning using infeasibility driven 
evolutionary algorithm,” Evolutionary Computation, In Press, (Accepted 09/201 1). 



Equality and Active Inequality Constraints: Most Probable Point 

The proposed method belongs to the class of repair, wherein infeasible solutions are repaired using the idea of Most 
Probable Point (MPP) (of failure). The notion of MPP is derived from Reliability Based Optimization (RBO).  

h(x)=0 x 

x* 

x* is the MPP of x. For every solution x, there is a MPP 
corresponding to every constraint. 

Xu is in the transformed space. 

For  any infeasible solution, find MPP’s for each violated constraint. This is solved using SQP. 

Compute the overall constraint violation at each of the MPP’s and pick the best and update x by x*. 

The overall constraint violation could be the value of the maximum violated constraint or the sum of constraint 
violation. 

 Saha, A. and Ray, T. A repair mechanism for active inequality constraint handling, in Proceedings of the IEEE 
Congress on Evolutionary Computation, (Brisbane, Australia), pp. 1240-1247, 2012.  
 
Saha, A. and Ray, T. Equality constrained multi-objective optimization, in Proceedings of the IEEE Congress on 
Evolutionary Computation, (Brisbane, Australia), pp. 47-53, 2012.  



Handling Equalities using Most Probable Point 

While existing methods try to minimize constraint violation, this approach attempts to minimize the distance. 
While the at the end, the solution has a CV equal to 0 and a distance =0, both traverse different landscapes. 

 



Introduction 

• The performance of all population based stochastic optimization algorithms are known to be affected by the 
presence of constraints 
 

• The nonlinearity, multi-modality and the feasibility space associated with each constraint is likely to be 
different. 

Constraint handling methods can be broadly categorized in four different types: 
•  use of penalty functions 
•  repair schemes 
•  use of decoders and 
•  the separation of objective function and constraints 

•  However, in all such formulations a full evaluation policy is adopted wherein for an infeasible solution 

• An important question is “why do we spend computational resources to evaluate constraints of   
             a solution, when it has already violated a constraint ?”.  

Assuming that one is only interested in a feasible solution (preferably optimum) at the end of the search 
process, it is important to investigate the worth of evaluating infeasible solutions i.e. the cost of 
evaluation versus the knowledge gained to steer the search 



Proposed Method 

Step-1:  Divide the population into (p+q ) subpopulations , where p is the number of inequality  
       constraints  and  q is the number of equality constraints. 
 
Step-2:  Assign a constraint sequence to each subpopulation i.e. (g1 , g2,……,gp)  for  p number of inequality  

constraints 
 
Step-3:  The solution is migrated to a feasible subpopulation, when it satisfies all the constraints in the 

prescribed sequence. 

Constraint Sequence   
(g1, g2, g3) 

Constraint Sequence    
(g3 ,g1,g3) 

Constraint Sequence   
(g2, g3,g1) 

Sequence sorting 

Initial order Final order 

g1 g2 g3 g1 g2 g3 

S1 5 _ _ 0 0 1 S3 

S2 0 3 _ 0 3 _ S2 

S3 0 0 1 2 _ _ S4 

S4 2 _ _ 5 _ _ S1 

Initial order Final order 

g1 g2 g3 g1 g2 g3 

S2 0 3 _ 0 0 1 S3 

S3 0 0 1 0 3 _ S2 

S4 2 _ _ 2 _ _ S4 

S1 5 _ _ 5 _ _ S1 

Initial order Final order 

g1 g2 g3 g1 g2 g3 

S3 0 0 1 0 0 1 S3 

S2 0 3 _ 0 3 _ S2 

S4 2 _ _ 2 _ _ S4 

S1 5 _ _ 5 _ _ S1 

Initial order Final order 

g1 g2 g3 g1 g2 g3 

S3 0 0 1 0 0 1 S3 

S2 0 3 _ 0 3 _ S2 

S4 2 _ _ 2 _ _ S4 

S1 5 _ _ 5 _ _ S1 

N.B. The constraint which has not been evaluated marked as ‘_’ 



• The problem has three linear constraints and the optimum solution lies on a constraint boundary.  

Example - 1  

Feasibility using Violation 

Feasibility using Sequencing 

Asafuddoula, M. , Ray, T. and Sarker, R., “A self-adaptive differential evolution 
algorithm with constraint sequencing,” in Lecture Notes in Computer Science, 
(Accepted 08/2012). 

• Continue evaluation of a solution as long as it 
satisfies the constraints. 

• An efficient method of constraint sequencing to 
capture the feasible region from different 
directions 



Example - 1  

Progress of 
subpopulation-1  
Generations- 
5 , 10, 20 

Progress of 
subpopulation-2  
Generations- 
5 , 10, 20 

Progress of 
subpopulation-3  
Generations- 
5 , 10, 20 

Progress of 
population  
Generations- 
5 , 10, 20 

Trajectory of  infeasible solutions 



Example-2  

Problem with multiple disconnected feasible regions 

•     A two variables optimization problem involving three constraints is presented below 
•     The problem has four disjointed feasible regions of different sizes 

Asafuddoula, A. , Ray, T. and Sarker, R., “A Differential Evolution Algorithm with 
constraint sequencing ,” in Proceedings 3rd Global Congress on Intelligent Systems, 
(Wuhan, China) 2012 

Feasibility using Sequencing to 
achieve multiple disjoint feasible 
regions. 

Feasibility using Violation which  
often trapped to a local optima. 

Single Variable problem 

Two Variables problem 

Feasible Contour of two variables problem 



Comparison with Other Methods 

Algorithms in comparison 
 
• ε-DE 
• JDE 
• COPSO 
• SaDE 

In a comparison with ε-DE,  
the proposed algorithm is better  
in 7 out of 11. 



Conclusion and Limitation 

• The scheme has been embedded within a DE algorithm  

• The schema offers great ability to achieve the feasible region from multiple feasible directions  

• The scheme is generic and can be embedded within other forms of population based stochastic optimization 
algorithms 

• Such an approach could be beneficial in two ways i.e. (a) less likely to be trapped at a local optima and  

           (b) save computational cost by avoiding evaluation of infeasible solutions whenever infeasibility is detected 

Limitations  

• The constraints are evaluated in a cyclic order (i.e. sequence ) in which the potential sequence could be missing 
and could be a limited usage. 

• The number of sub-populations  and the size of each sub-population are depended upon the number of 
constraints which could be non-trivial for handling large number of constraints. 

• The proposed schema does not provide the best possible sequence out of the given constraint sequences. 



Further Improvement 

The proposed method is modified with the following steps: 

Step-1: Assign random constraint sequences to every individuals in the population . 
 
Step-2: Compute the number of satisfied constraints (NS) and the amount of violation(V ). 
 
Step-3: With the number of constraints satisfied taking a precedence over the violation value, a sorting is yield 
to the ranking of the individuals. 

•      For example assume a population, containing 4 solutions (S1, S2, S3, S4). The constraint 
violation matrix would assume a form illustrated in Table 1 with S3 identified as the best and S1 the 
worst 

S1,S2,S3 and S4 are  
assigned with random 
constraint sequences 
to evaluate 



Example-3 

•    The feasible space of the problem is the feasible space dictated by constraint g3 

Progress of CS Progress of CV 

The most used constraint  
sequence is (g1,g2,g3) and less 
used  sequence is  (g3,g2,g1)   
out of 50 independent runs. 

(a) (b) 

Progress plots (a) distance of a best feasible solution from the optimum (b) 
feasibility of the solutions 



Example-4 Example- 

•    The feasible space for the problem lies at the intersection of the feasible spaces of the individual 
constraints i.e. (i.e.g1∩g2∩g3) 

Progress of CS Progress of CV 

The most used constraint  
sequence is (g1,g2,g3) and less 
used  sequence is  (g3,g1,g2)   
out of 50 independent runs. 

(a) (b) 

Progress plots (a) distance of a best feasible solution from the optimum (b) 
feasibility of the solutions 



Comparison with Other Constraint Handling Methods 

•   The average number of function evaluations (NFEs) required to identify the first feasible solution and the 
computational time required to obtain the known optimum is plotted as a performance profile. 

•   We reported the results obtained by using stochastic ranking (SR) , self adaptive penalty (SP) , superiority 
of feasibility (SF)  and epsilon constraint (EC) within the same framework of DE using g-series benchmark. 

•   The results clearly indicate the superiority of DE-CS  over other strategies in terms of obtaining the first  
 feasible solution 

Performance profiles of DE-CS and others based 
on NFEs 

Performance profiles based on computational time 



Discussions 

•      The utility of using multiple constraint sequences is highlighted using two illustrative examples 
 
•     The results on the test problems clearly indicate that the approach is computationally efficient and better 
than existing strategies for constraint handling 
 

•     The proposed scheme delivers first feasible solution using less number of function evaluations in most of 
the test problems 
 

•      While identification of a feasible solution fast does not guarantee the search to deliver optimum solutions 
early, such a scheme is useful if one is interested in identifying a feasible solution to a problem with limited 
computational resource 



Managing Multiple Objectives: Many Objective Optimization  



Many objective optimization: Pareto Corner Search 

• For more than four objectives, non-
dominated sorting is ineffective. 

• With a finite population, providing well 
spread and converged solutions on a 
hyper-surface is difficult. 

• Some objectives might be redundant. 

• Our Approach: Focus on Corner Solutions: 
Pareto Corner Search Evolutionary 
Algorithm 

The key solutions proposed in this work  
are so called “Pareto corner solutions” 

Proposed technique  
• Instead of whole Pareto front, 

search for key solutions on it. 
• These key solutions must 

exhibit good convergence and 
diversity.   

• Analyze this set of solutions for 
identifying redundant 
objectives. 

 

 Consider an optimization problem with M Objectives, 
where the objective set is denoted by FM. Now consider 
a subset Fk of the original objectives set, with k < M 
objectives. If minimization of k-objectives in this 
subset results in a single solution in the M objective 
space, then this solution is referred to as the corner(or 
Pareto corner) solution. 



Performance of Pareto Corner Search  

Water resource problem (5 objectives, reduced to 3) 

Radar waveform problem (9 objectives, reduced to 6) 

• Able to predict dimensionality accurately 
for up to DTLZ-(I,M) problems up to 100 
Objectives. 

• Up to DTLZ-(5,30) problems accurately 
Identified using less than  5 % of the 
function evaluations as used in the previous 
best reported studies. 
 

 
Savings in Computational Cost 

Singh, H.K., Isaacs, A., Ray, T. (2011), A Pareto 
Corner Search Evolutionary Algorithm and 
Dimensionality Reduction in Many-Objective 
Optimization Problems, IEEE Transactions on 
Evolutionary Computation, Vol. 15, Issue 4, pp. 
539 - 556.  



• Many objective optimization typically refers to problems with the number of objectives greater than four.  
 

• The commonly used dominance based methods for multi-objective optimization, such as NSGA-II, SPEA2 etc. 
are known to be inefficient for many-objective optimization as non-dominance does not provide adequate 
selection pressure to drive the population towards convergence. 
 

• There are also radically different approaches to deal with many objective optimization, such as attempts to 
identify the reduced set of objectives  or corners of the Pareto front. 

• Interactive use of decision makers preferences . 
• Use of reference points  from systematic sampling or solution of the problem as a hypervolume maximization 

problem. 

Fig: 1. Using Traditional 
Approach (NSGA-II) 

Fig: 2. Using Systematic Sampling 

Introduction 



Introduction 

• Decomposition based evolutionary algorithms are yet another 
class of algorithms originally introduced as MOEA/D 
 

• The multi/many-objective optimization problem is 
decomposed into a series of scalar optimization problems 

            using different scalarization approaches  ( i.e. Weighted Sum 
Approach, Tchebycheff Approach or Normal Boundary 
Intersection Method )  

 
• In the context of many objective optimization, the first 
            issue relates to the design of a computationally efficient 

scheme to generate W uniform reference directions for a M 
objective optimization problem 

 
• The second issue related to scalarization has been addressed 

via two fundamental means i.e. through a systematic 
association and niche preservation mechanism  

Asafuddoula, A. , Ray, T. , Sarker, R. and Alam, K. “An adaptive constraint handling 
approach embedded MOEA/D,” in Proceedings of the IEEE Congress on 
Evolutionary Computation, (Brisbane, Australia), pp. 2516-2513, 2012. 

Fig. 3. A set of reference points in a 
normalized hyper-plane for number of 
objectives, M = 3. 



Proposed Method 

The algorithm consists of four major components – 
 generation of reference directions and assignment of neighbourhood 
       computation of distances along and perpendicular to each reference direction 
       method of recombination using information from neighbouring sub-problems and finally 
       adaptive epsilon comparison to manage the balance between convergence and diversity. 
 



Proposed Method 

 Generation of reference directions and assignment of neighbourhood 
 
•          A structured set of reference points (β ) is generated spanning a hyper-plane with    
            unit intercepts in each objective axis 
 
•       The approach generates W points on the hyper-plane with a uniform spacing of δ = 1/p for any number  
           of objectives M 
 
 
 
 

The process of generation of the reference points is illustrated for a 3-objective  
 optimization problem i.e. (M=3) and with an assumed spacing of δ = 0.2 i.e. (p = 5) in  
the Figure 

Fig. 4. (a) the reference points are generated computing β’s recursively (b) 
the table shows the combination of all β’s in each column 

(a) 

(b) 



Proposed Method 

   Computation of Distances along and Perpendicular to Each Reference Direction 

•    The intercepts of the hyper-plane along the objective axes are denoted by a1,a2, ....,aM. The 
generic equation of a plane through these points can be represented using the following 
equation 

1 2 ......... MAf Bf Cf+ + +

where, A, B,....,C are the unit normal of the plane. The intercepts of the plane with the axis 
are given by a1 = 1/A, a2 = 1/B,....., and aM = 1/C. 

A and B are the unit normal 
along the axes 

 An example of intercepts computation for a two-objective  
problem 

----------(1) 

' ( )
( ) , 1, 2,...j j

j
j j

f x z
f x j M

a z
−

= ∀ =
−

-----------------(2) 

Every solution in the population is subsequently scaled as 
follows: 

z j = (f 1min , f2
min, ....., f Mmin ) represents the ideal point. 

Fig. 5. Computation of intercepts of a two-objective problem 



Proposed Method 

•    For any given reference direction, the performance of a solution can be judged using 
two measures d1 and d2 as depicted in Equation 3 and 4. 
 
•   The first measure d1 is the Euclidean distance between origin and the foot of the normal drawn   
from the solution to the reference direction, while the second measure d2 is the length of the 
normal. 

'
1 ( )T

jd w f x=

Fig. 6. Distance measures for a point 
p1 in two objectives 

For j=1 to M number of Objectives. 

' '
2 || ( ) ( ) ||T

j jd f x f x w w= −

----------(3) 

----------(4) 

It is clear that a value of d2 = 0 ensures the solutions are perfectly 
aligned along the required reference direction ensuring perfect 
diversity, while a smaller value of d1 indicates superior convergence. 

•    The mating partner for Pi (where i is the index of the current individual in a population) is 
selected using of the following rules i.e. rule 1: select a parent from the neighbourhood with a 
probability of τ and rule 2: select a random parent from the population with a probability of (1−τ ). 

   Mating Partner Selection 



Proposed Method 

   Method of Recombination 

•     In the recombination process, two child solutions are generated using simulated binary crossover (SBX) 
operator and polynomial mutation. The first child is considered as an individual attempting to replace any 
parent in the population. 

   Adaptive Epsilon Comparison to Manage the Balance between Convergence and Diversity 

Case 1: Both the solutions have 
their d2 values less than εCD. 
One with the smaller d1 is 
selected i.e.(s1) 

Case 2: Both the d2 values are 
more than εCD. One with the lower 
d2 value is selected i.e.(s2). 

Case 3: One solution has its d2 
value more than εCD and the 
other has its d2 value less than 
εCD 

2
1

W

i
CD

d

W
ε ==

∑•  The average deviation εCD  for the population of solutions 
is computed using Equation 5 ----------(5) 



An Illustrative Example 

• In order to observe the process of evolution, we computed the average performance of the population i.e. 
average of the d1 and d2 values for the individuals for DTLZ1 (3 objectives) 
 

• One can observe from Fig. 8, that the average d2 converges to near zero (i.e. near perfect alignment to the 
            reference directions) while the average d1 measure stabilizes at around 0.8  in the normalized plane 

indicating convergence to the Pareto front 

Fig:8. Converging the d1 and 
d2 measures over generations 

Fig:7. Evolving the best solutions 
with minimum d1 and d2 distances 

Fig:9. Final non-dominated 
solutions achieved for DTLZ1 
problem 



Experimental Results 

  Performance on Unconstrained DTLZ Problems 

•  In this comparison, we have reported the best, median 
and worst IGD results obtained using 20 independent runs 
for DTLZ1 and DTLZ2. The results are compared against M-
NSGA-II and MOEA/D-PBI. 

•  One can observe that our algorithm obtained the best IGD 
values in 8 instances out of 10 

DBEA-Eps MOEA/D-PBI M-NSGA-II 

• Results using systematic sampling for DTLZ1  
         and DTLZ2 problems  for all algorithms M-NSGA-II MOEA/D-PBI DBEA-Eps 



  Constrained Engineering Design Problems 

Experimental Results 

  Car Side Impact Problem 

•  The problem aims to minimize the weight of a car, the pubic force experienced by a passenger and the 
average velocity of the V-Pillar responsible for bearing the impact load subject to the constraints involving 
limiting values of abdomen load, pubic force, velocity of V-Pillar, rib deflection etc 

• The algorithms are run for 500 generations and the final non-dominated front is shown in Figure. It is 
important to note that the results of MOEA/D-PBI is derived without scaling which could be a reason among 
others for poor performance. 

Fig. 10. Solutions obtained using (a) DBEA-Eps (b) MOEA/D-PBI on three-objective car side impact problem 
(a) (b) 



Experimental Results 

 Water Resource Management Problem 

•  This is a five objective problem having seven constraints taken from the literature. The parallel coordinate 
plot generate using our proposed algorithm (DBEA-Eps) is presented in  Fig. 11. 

•  The best IGD value across 20 runs is 3.29e−2 
and the IGD is computed using the reference 
set of 2429 solutions 

• A scatter plot-matrix is presented. The results 
from the DBEA-Eps are shown in the top-right 
plots vis-a-vis the known reference set of 2429 
solutions (shown in bottom-left plots). 

Fig. 11. Solutions obtained using DBEA-Eps on five-objective water problem 

Fig. 12. A scatter plotmatrix showing DBEA-Eps (top-right plots) vis-a-vis the 
known reference set of 2429 solutions (bottom-left plots) 



Experimental Results 

 General Aviation Aircraft (GAA) Design Problem 

•   This problem was first introduced by Simpson. The problem involves 9 design variables i.e. cruise speed, 
aspect ratio, sweep angle, propeller diameter, wing loading, engine activity factor, seat width, tail length/ 
diameter ratio and taper ratio and the aim is to minimize the takeoff noise, empty weight, direct operating 
cost, ride roughness, fuel weight, purchase price, product family dissimilarity and maximize the flight 
range, lift/ drag ratio and cruise speed 

•  In this example, we have used 100 reference points 
and the population was allowed to evolve over 5000 
generations. A reference set of 412 non-dominated 
solutions obtained from ε-MOEA and Borg-MOEA are 
used to compute the IGD metric 

•  The performance of the algorithms is compared 
using the hyper-volume in Table 2 and IGD in Table 3. 
One can observe that the proposed algorithm 
performs marginally better than others for this 
problem. 

Table 2. Performance metric value of product family 
design problem using 50 independent runs 

Table 3. Performance metric value of product family     
         design problem using 50 independent runs 



Conclusion and Future Work 

•  In this paper, a decomposition based evolutionary algorithm with adaptive epsilon comparison is introduced 
to solve unconstrained and constrained many objective optimization problems. 
 

•  The approach utilizes reference directions to guide the search, wherein the reference directions are 
generated using a systematic sampling scheme. 
 

•   In an attempt to alleviate the problems associated with scalarization (commonly encountered in the context 
of reference direction based methods), the balance between diversity and convergence is maintained using an 
adaptive epsilon comparison. 
 

•   In order to deal with constraints, an epsilon level comparison is used which is known to be more effective 
than methods employing feasibility first principles. 
 

•   Three constrained engineering design optimization problems with three to seven constraints (car side 
impact, water resource management and a general aviation aircraft design problem) have been solved to 
illustrate the performance of the proposed algorithm. 
 

•   The preliminary results indicate that the proposed algorithm is able to deal with unconstrained and 
constrained many objective optimization problems better or at par with existing state of the art algorithms 
such as M-NSGA-II and MOEA/D-PBI. 



Further Improvements 

•    Due to improper balance between d1 and d2 with the epsilon 
level Comparison, the solutions can converge to a local optima 

•  In the steady state form, if a child solution is non-dominated with 
respect to the reference set, it enters the reference set via a 
replacement. The child solution competes with all solutions in the 
reference set in a random order until it makes a successful 
replacement or have competed with all individuals in the reference set. 

• If we denote the distances as {d1r, d2r } for a rth solution in 
the reference set and {d1c, d2c } denotes the distances for the 
child solution along rth reference direction, the replacement 
rule is as Algorithm 2. 

Improved solutions for the  
same problem DTLZ1 on 3  
objectives with same number  
of  function evaluations 

Fig: 13. Locally converged solutions for problem DTLZ1 on 3-objective 

Fig: 14. Final Pareto solutions for problem DTLZ1 on 3-objective with modified comparison  



Further Improvements 

•    The practicality of solving many-objective optimization is often 
questioned owing to the fact that even if the whole direction vector is 
available, there are no suitable means for the solutions to align properly, 
and hence it is difficult to choose a preferred solution out of the 
innumerable Pareto optimal solutions. Therefore, the solutions can 
converge to a local optima.   

• In order to maintain the corner solutions, the  
 corner solutions  of a problem should be preserved  
externally. 

 Sample Population 
           for a Three- Objective 

Problem Improved Pareto 
front for 
DTLZ5(5,2) 
problem  by 
preserving the 
corner solutions 
externally 

Pareto Corner  sort example 

Fig: 15. Locally converged solutions for problem 
DTLZ5(2,5) 

Fig: 16. Final Pareto solutions for problem DTLZ5(2,5)  
preserving corner solutions 



Managing Computationally Expensive Analysis: Surrogate 
Assisted Optimization 



Surrogate Assisted Optimization 

• Evaluation of a solution is often a computationally expensive 
process. 

• Use approximations or surrogates within an optimization loop. 
• Different type of surrogates have different behavior. Choice of 

the most appropriate one is non-trivial. 
• A function can be better approximated by a type of surrogate 

over another. 
• The same function in different regions can be better 

approximated using different surrogates. 
 

• Our approach is to use: Multiple Spatially distributed 
Surrogates of Multiple Types. 

• RSM, RBF, MLP, Kriging Models coexist and are attempted on 
each objective and constraint function. 

• A minimum prediction error threshold is used to invoke any 
surrogate call, else an actual evaluation is invoked. 

• Solutions with inadequate neighborhood sampling using 
actual analysis always use actual analysis. 
 
 
 
 
 

 



• Consider another system 
– It’s an unknown function 
– Experiments 

 
• Approximation Models 

– Linear 
– Quadratic 
– Radial Basis Function 
– Kriging 

 

x f 

Surrogate 

• Surrogates are cheaper than actual evaluations 

• Choice of surrogate dictates approximation accuracy 

Surrogate Assisted Optimization 



x f 
• Consider earlier system 

What is the smallest value of f? 
• Build Surrogate 

Sampling 
Quadratic Model 

• Evolutionary Steps 
Using surrogate 
Find smallest value 
Verify using actual model 

• Re-train Surrogate 
• Repeat …  

• Single global surrogate has difficulty approximating 

Single Surrogates 



x f 
• Using the same system 

What is the smallest value of f? 
• Build Many Surrogates 

Sampling 
Grouping (Clustering) 
Multiple Quadratic Models 

• Evolutionary Steps 
Find smallest values 
Verify using actual model 

• Re-group and Re-train 
• Repeat … 

• Multiple surrogates approximate the system better 

• Performance depends on number of groups/clusters 

Multiple Surrogates 



x f 
• Last time the same system 

 
• Sampling 
 
• Building Many Surrogates 

2 Clusters 
3 Clusters 
4 Clusters 
5 Clusters 

• Choose best Clustering 
Every evolutionary step 

• Adaptive clustering picks the number of clusters (and 
   surrogates) which approximate the system best! 

Adaptive Multiple Surrogates 



ZDT1, ZDT2 and ZDT3: Same number of function evaluations, Same starting population, 2100 evaluations. 

ZDT1 and ZDT2: Effect of Number of Clusters 

Performance 

Isaacs, A. , Ray, T. , and Smith, 
W. , “Multiobjective design 
optimization using multiple 
adaptive spatially distributed 
surrogates,” International 
Journal of Product 
Development, vol. 9, no. 1-3, 
pp. 188–217, 2009. 



Extreme Surrogate Assisted / Multifidelity Optimization Capability 

• Given a set of data, we offer a highly sophisticated framework 
for generating approximations(surrogates).  

• Some functions are  better approximated by a type of 
surrogate over another. 

• The same function in different regions can be better 
approximated using different surrogates. 

• RSM, RBF, MLP, Kriging Models coexist and are attempted on 
each function. 

• Our approach is to use: Multiple Spatially distributed 
Surrogates of Multiple Types. 
 Isaacs, A. , Ray, T. , and Smith, W. , “Multiobjective design optimization 

using multiple adaptive spatially distributed surrogates,” International 
Journal of Product Development, vol. 9, no. 1-3, pp. 188–217, 2009. 

Using 12 accurate CFD analysis, the performance of a surrogate model is evaluated on 277 unseen design instances 
(Fig 1. (red). Using 12 accurate and 277 inaccurate CFD estimates, the performance of the combined model is 
presented in Fig1. (blue). Accurate CFD refers to one where the simulation is run for 100 iterations, while inaccurate 
refers to 50 iterations. 

Multifidelity-Optimization 

We can boost model performance using data from different sources, different quantities and even via hypothetical 
quantities. Hence generation of combined models using data from multiple published sources or combinations of 
experimental and CFD results is now possible.  



Need for Robust Solutions: 

Robust Optimization 



Robust Optimization 

Saha, A. and Ray, T.(2011), Practical 
Robust Design Optimization using 
Evolutionary Algorithms, ASME Journal of 
Mechanical Design, Vol. 133, October 
2011, pp. 101012-1 - 101012-19. 



Performance of Robust Design Optimization Methodology 

Toy Submarine Design Problem 

Alam, K. , Ray, T. and Anavatti, S. 
,“A new robust design optimization 
approach for unmanned 
underwater vehicle design,” 
Journal of Engineering for the 
Maritime Environment, In Press, 
(Accepted 11/2011). 



Uncovering Design Rules 



Uncovering Design Rules 

Mohamad, A.F.A. , Ray, T. , and Smith, W. , “Uncovering secrets behind low resistance planing craft hull forms 
through optimization,” Engineering Optimization, vol. 43, no. 11, November, pp. 1161–1173, 2011. 
 
Mohamad, A.F.A. , Ray, T. , and Smith, W. , “A hydrodynamic preliminary design optimization framework for high 
speed planing craft,” Journal of Ship Research, vol. 56, No. 1, pp. 35–47, 2012. 

Mining the data generated out of an optimization process can lead to the identification of useful design 
rules. 



Application Snapshot: Shape Representation and Optimization 



Basics 

•  In shape optimization, a designer requires to adopt a shape representation scheme. 

•  The variables of such a scheme should be as few as possible, yet it should reflect changes to the function or                  
constraints of the optimization problem. 

•  Common variables include control points of Bezier Curves, Bsplines, NURBS or special encoding schemes  such     
as those used for NACA airfoil shapes or PARSEC for representation of  airfoil shapes. 

•  Typically with such shapes, computationally expensive analysis is invoked, i.e. CFD or FEM analysis is usually 
conducted on those shapes to find their worth. 

•  The underlying optimization problem thus is computationally expensive and this extreme care should be taken 
to    ensure the variables are just enough to provide the designer with the flexibility. 



Shape Representation 

 
• Shape representation and optimization is a key element in any product design process.  
  
• Shape representation schemes are required for the generation of shapes which in turn facilitates the design of 

functional articles. 
 
• Aerofoils, converging-diverging nozzles, ship-hulls, medical prosthesis, structural elements and many other 

functional articles require shape generation and modification to achieve the desired performance. 

 

Aircraft wing 

Ship hull 
Prosthesis 



 B-spline Curve 
• Non-global behaviour. 
• Greater flexibility. 
• Degree of the curve does not influenced by control points. 
• Strong convex-hull property. 
• Variation diminishing and affine invariance properties. 
 
A B-spline curve can be defined as [Cox, 1971]: 

The basis functions                  are defined by the Cox-de Boor’s recursion 
formula:                               

Shape Representation 
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Shape Matching Metrics 

 
 
 Euclidean Distance 

 
• Distance between two corresponding points of two shapes. 

 
 

•  for j = 2, this yields the Euclidean distance [Remco, 2001].  
 

 Hausdorff Distance 
 
• Classical non correspondence based shape matching method. 
•  For two finite point sets P and Q the Hausdorff distance between 
•           P and Q is defined as [Huttenlocher, 1990]: 
 
 
 
Where, 
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 2D Shape Representation and Optimization 



Smart Repair 

 Boundary representation using B-Splines. 

 Novel Repair Method that ensures generation of valid geometries. 

 Our Proposed Repair Approach: A convex-hull is generated using a set of control points (Fig.2). Thereafter, the 
points (lying inside the convex-hull) nearest to their adjacent edges are inserted to generate the non-
intersecting control polygon net (Fig.3). 

 

Khan, M., Mohamad, A.F.A., Isaacs, A., and Ray, T.(2011), A novel evolutionary approach for 2D shape 
matching based on B-spline modeling, IEEE Congress on Evolutionary Computation, CEC-2011.  
 
Khan, M., Mohamad, A.F.A., Isaacs, A., and Ray, T., A smart repair embedded memetic algorithm for 2D 
shape matching problems, Engineering Optimization, Accepted 29/09/2011.  

Fig.1  Position of initial control 
points without repair 

Fig .2  Convex-hull formation 
with initial control points 

Fig.3  Position of initial control 
points after repair 



• Wing geometry is one of the most important factors that affects the performance of a flapping wing.   
 
• In order to gain an in-depth understanding of flapping flight with an aim to identify optimal wing 

shapes, there is a need for an universal and flexible shape representation scheme that is amenable to 
optimization. 

 

Fig.4  Flapping wing geometry of dragonfly 

Flapping Wing Geometry  

 Khan, M.  and Ray, T. , “Shape representation and a morphing scheme to support flapping wing 
research ,” International Conference on Pattern Recognition Applications and Methods, ICPRAM-
2012. 



Fig.5  Dragonfly and Damselfly wing species and digitally extracted shapes’ boundaries.    

Fig.6  Dragonfly and Damselfly wing 
dimensions with their aspect ratios 
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Flapping Wing Species  



Performance of Smart Repair Strategies 2D 

• The optimum design of the 2D Damselfly wing (contains 516 points in x and y coordinates) after 5,000 

function evaluations. 

Fig.7  Progress plot of the best design for single 
objective matching error minimization Method Error 

Measurement 
Best Worst Mean Median Std. 

Real-
coded EA 

Max 
(Eucli,HD) 

3.026 6.958 5.132 5.202 1.210 

Proposed 
method 

Max 
(Eucli,HD) 

1.4e-05 3.2e-04 8.3e-05 6.1e-05 8.1e-05 

Tab. 1  Results for  2D Damselfly wing shape example 

Ani.1  Evolution of Damselfly wing (red) towards the 
 target Damselfly wing (blue) 



Performance of Smart Repair Strategies 2D 

• The optimum design of the 2D Stingray (contains 740 points in x and y coordinates) after 5,000 function 
evaluations. 

Fig.8  Progress plot of the best design for single 
objective matching error minimization Method Error 

Measurement 
Best Worst Mean Median Std. 

Real-
coded EA 

Max 
(Eucli,HD) 

24.665 50.710 40.771 42.092 6.677 

Proposed 
method 

Max 
(Eucli,HD) 

0.067 1.863 0.706 0.589 0.518 

Tab. 2  Results for  2D Stingray shape example 

Ani.2  Evolution of  Stingray (red) towards the 
 target Stingray (blue) 



Fig.9  Evolution of generated shape (red) towards the target shape (blue) 

2D Examples 

Simple fish Stingray Airfoil Dragonfly wing-1  

Damselfly wing-1 Dragonfly wing-2 Dragonfly wing-3 Damselfly wing-2 



 3D Shape Representation and Optimization 



Sorting Mechanism (3D) 

Khan, M., Mohamad, A.F.A., and Ray, T., An efficient memetic algorithm for 3D shape matching 
problems, Engineering Optimization, Under Review.  

• 3D shape is assumed to be disintegrated to 2D shape optimization problems termed as Stations. 
 
•  In order to avoid entangling of control points between two neighbouring stations (Fig.10), every set 

of  control points spanning the shape in x direction is sorted in ascending order (Fig.11). 

Fig.10 Position of control points 
before sorting  

Fig.11 Position of control points 
after  sorting  



Performance of Smart Repair Strategies 3D 

Method Error 
Measurement 

Best Worst Mean Median Std. 

Real-
coded EA 

Max 
(Eucli,HD) 

12.798 14.444 13.752 13.809 0.379 

Proposed 
method 

Max 
(Eucli,HD) 

0.010 0.241 0.108 0.091 0.064 

• The optimum design of the 3D Roger’s surface (contains 289 points in x , y and z coordinates) after 10,000 
function evaluations. 

Fig.12  Progress plot of the best design for single 
objective matching error minimization 

Tab. 3  Results for  3D Roger’s surface shape example 

Ani.3  Evolution of 3D Roger’s surface (evolving surface) towards the 
 target Roger’s surface (point cloud) 



Performance of Smart Repair Strategies 3D 

• The optimum design of the 3D Flower vase (contains 676 points in x, y and z coordinates) after 100,000 
function evaluations. 

Fig.13  Progress plot of the best design for single 
objective matching error minimization 

Method Error 
Measurement 

Best Worst Mean Median Std. 

Real-
coded EA 

Max 
(Eucli,HD) 

44.694 51.002 48.324 48.043 1.627 

Proposed 
method 

Max 
(Eucli,HD) 

0.848 1.553 1.244 1.264 0.166 

Tab. 4  Results for  3D Flower vase shape example 

Ani.4  Evolution of 3D Flower vase (evolving surface) towards the 
 target Flower vase (point cloud) 



Performance of Smart Repair Strategies 3D 

Method Error 
Measurement 

Best Worst Mean Median Std. 

Real-
coded EA 

Max 
(Eucli,HD) 

0.367 0.388 0.380 0.380 0.005 

Proposed 
method 

Max 
(Eucli,HD) 

0.002 0.037 0.005 0.004 0.007 

• The optimum design of the 3D Bulbous Bow (contains 441 points in x , y and z coordinates) after 50,000 
function evaluations. 

Fig.13  Progress plot of the best design for single   
objective matching error minimization 

Tab. 4  Results for  3D Bulbous Bow shape example 

Ani.4   Evolution of 3D Bulbous Bow (evolving surface) towards the 
 target Roger’s surface (point cloud) 



 Real World Application 



Rock Climbing Hold IGES Surface Data Cloud 

Post-processed Data Points Inverse Fitting 

Shape Matching: 3D Real Objects 



Real World Application (3D Ear Plug) 

 
•  A 3D ear plug has been considered to support real world product application. 

 
• The evolution of shapes is very crucial component for optimization of shapes 

according to a patient’s ear anatomy and canal. 
 

• The target shape is extracted in the form of a point cloud via a 3D scan. 
 

• The optimum design of the 3D ear plug (contains 841 points in x, y and z 
coordinates) after 150,000 function evaluations. 

Fig. 14  Ear plugs  

Fig. 15 3D scanned image  Fig.16  Target shape (CATIA 
model) 

Ani.5  Ear plug evolutions  



IGES Surface Hearing Aid Data Cloud 

Post-processed Data Points Inverse Fitting 

Shape Matching: Customized Ear Plugs 



 
 An efficient method is introduced that is capable of solving 2D and 3D shape matching problems.  

 
 The control points of the underlying B-spline representation are optimized using a memetic 

algorithm, while the presence of repair operation ensures generation of valid shapes. 
 

 The memetic algorithm is embedded with multiple recombination strategies (EA and DE) and a 
local search to improve its efficiency. 
 

 The proposed method has  been tested using number of 2D shape examples of varying 
complexity, each of which was solved to desired accuracy within 5,000 evaluations, whereas for 
the complex 3D shape example 100,000 evaluations were required. 
 

 The performance of the repair strategy has been studied for both 2D and 3D examples to highlight 
the benefits. 
 

 Such a capability is the first step towards a cutting edge shape optimization approach, where one 
is interested to uncover novel shapes with extreme performance characteristics. 

 

Discussion and Conclusion 



Challenges and Outlook 

 Better algorithms to solve optimization problems with equality constraints. 

 Test of Time: Many objective optimization problems and methods to solve them. 

 Multi-fidelity Optimization 

 Large Scale Optimization, i.e problems involving several hundreds of variables. 

 Implementations on clouds and clusters. 

 Knowledge embedded problem specific search  strategies. 

 Ensembles/Porfolio of methods with self adaptation. 

 Learning to uncover design rules. 



Application Snapshot: Underwater Vehicle Design 



Introduction 

• Unmanned Underwater Vehicles (UUVs): 
 Robotic mobile instrument carriers 
 Self-contained propulsion, sensors and intelligence 
 Complete sampling and survey tasks with little or no 

human intervention 
 

• Application: 
 Scientific 

o Oceanographic survey 
o Search, classify, map 

 Commercial 
o Mineral field survey 
o Pipeline route survey 

 Military 
o Mine countermeasures 
o Anti-submarine warfare 

 
• Types: 
 Autonomous Underwater Vehicle (AUV) 
 Remotely Operated Vehicle (ROV) 
 Autonomous Surface Vehicle (ASV) 
 Unpropelled underwater vehicle (Glider) 

Fig. An autonomous underwater vehicle 



Introduction 

*Source: Scopus, database of academic journal articles 

Fig. UUV research trend 



Classification of UUVs 

UUV 

Academic 
Research 

Commercial 

Scope of 
Application 

Military 

Civilian 

Both 

Geometry 

Operability 

Power 
Source 

Means of 
Propulsion 

Design 
Process 

Shape 

Size 
Working 

Depth 

Cruising 
Range 

Endurance 

Ease of 
Launch 

Battery 

Solar 

Fuel Cell 

Hybrid 
Propeller 

Jet-pump 

Buoyancy 
Driven 

Use of 
Optimiser 

No use of 
Optimiser 

Fig. Classification tree of UUVs 



Classification of UUVs 

Fig. Classification of different UUVs under development and in use around the world 



Classification of UUVs 

Fig. Classification of different UUVs under development and in use around the world (continued) 



Motivation 

• Very limited systematic study has been done with regards to optimum design. 
 

• Previous attempts on UUV designs have focused primarily on functional designs, often accepting non-
optimal designs. 
 

• Placement strategy for clash-free arrangement of the on-board components has been overlooked by the 
researchers. 
 

• Robust design, a design to mitigate the variation in design variables on the performance of the vehicle, has 
not been considered in the context of UUV designs. 
 

• A model capable of handling different user and mission requirements. 



Approach 

(a) Shape for good payload capacity (b) Shape for low drag 

(c) Shape for good manoeuvrability (d) Shape for high speed capacity 

(e) Shape for good attitude control 

Fig. Different shapes of UUV 



Flowchart of the Optimization framework 

Start 

Suite of 
Optimization 
Algorithms 

Design 
Requirements 

Catalogue 
Information 

Geometry and 
Configuration 

Module 

Internal 
Arrangement 

External 
Geometry Hydrostatics Hydrodynamics 

Chosen 
Optimizer 

Stop 

Geometry variables 

Reached Termination 
Criteria? 

Candidate Design 



Interfacing Multiple Analysis Tools 

Design requirements 

Geometry 
variables 

3D model Mesh file 

Performance 

Optimum design 

Fig. Inter-process communication flow among applications 

• The design optimization framework consists of several 
applications, namely Matlab, Microsoft Excel, CATIA, 
ANSYS (ICEM CFD) and FLUENT. 
 

• Matlab: for numerical computation and is the basis of 
the whole optimization process. 
 

• Microsoft Excel and Text Document: medium of 
communication between applications. 
 

• CATIA: for modelling the vehicle based on the 
geometry parameters generated from the 
optimization process. 
 

• VBScript: to automate CATIA modelling that can 
generate the model without user intervention. 
 

• ANSYS: to simulate the flow around the designed 
vehicle. 

 - ICEM CFD: to generate the mesh 
 - FLUENT: to solve the flow problem 
 

• The framework facilitates the communication of data 
from one application to the next through seamless 
integration of Matlab, CATIA and ANSYS; thereby 
producing an automated multidisciplinary design 
environment.  



Arrangement of Internal Components: Clash-free Mechanism 

• An important aspect of this work is to apply a clash-free 
mechanism while arranging the internal parts of the UUV for 
optimal CG position. 
 

• The term clash-free refers to the placement of the internal 
components such as controller, propellers and battery 
compartment in their respective positions in such a way that 
none of the components coincide (occupy the same place)  
either partially or wholly with other components, while 
maintaining appropriate clearance between them. 
 

• As the design optimization approach is an iterative process, the 
use of the clash-free mechanism is essential to obtain a clash-
free arrangement of the internal components for every valid 
design. 
 

• Although in reality some components have irregular shapes, 
minimum bounding box dimensions have been used to derive 
the clash-free configuration. 

Fig. Illustration of bounding box concept 
used for internal components 



Clash-free Mechanism 

Catalogue 
Part 1 
Part 2 
Part 3 
. 
. 
. 
Part N 

Input 

Process 

Output 

3D Clash-free 
Mechanism 

Fig. 3D clash-free mechanism 



Algorithm: Clash-free Mechanism 
Require: O1 : ON (N >1) {Total number of internal parts to be placed} 
Require: Li (i = 1 : N) {Initial lower leftmost corner location of each part defined by the optimizer (x, y, z)} 
Require: Bi (i = 1 : N) {Minimum bounding box dimensions of the parts (length, width and height)} 
1:  for i = 1 : (N − 1) do 
2:  Find coordinate matrix of Oi w.r.t. the global coordinate system, Ci(8×3) = Li(8×3) + Bi(8×3) 
3:  for j = (i + 1) : N do 
4:   Find coordinate matrix of Oj w.r.t. the global coordinate system, Cj(8×3) = Lj(8×3) + Bj(8×3) 
5:   Create coordinate matrix of the pair of Oi and Oj w.r.t. the global coordinate system, 
  Cij(16×3) = [Ci(8×3); Cj(8×3)] 
6:   Assign Di(1×3) = max(Ci) − min(Ci), Dj(1×3) = max(Cj ) − min(Cj ) 
7:   Compute bounding box dimensions of the pair, Dij(1×3) = max(Cij ) − min(Cij ) 
8:   Compute clash, M(1×3) = Di + Dj – Dij 

9:   Find how many elements of are non-zero, E = find(M >0) {E < 3 indicates no clash} 
10:   if (E = 3) then 
11:             Select the direction of movement (random or predefined in either X, Y or Z axis) 
12:             Move Oj, Cj = Cj +M, Lj = Lj +M {New coordinates and location of Oj} 
13:             while (E = 3) do 
14:    Repeat steps 5 to 12, end if 
15:             end while 
16:   end if 
17:  end for 
18: end for 



Clash-free Mechanism 

Fig. Typical illustration of the clash-free mechanism 

• An example of resolving a clash along the Z-direction (1D) using dimension comparison as adopted in the present 
approach is illustrated in the following figure. 

• As can be seen, there are clashes between objects 1 and 2, and objects 2 and 3. 
• Considering the first pair, the amount of clash between objects 1 and 2 is c12=l1+l2-l12. In figure, object 2 is moved 

along the Z-direction an amount equal to c12 and then the clash between objects 1 and 2 has been resolved. 
• Similarly, the amount of clash between objects 2 and 3 can be found as c23=l2+l3-l23. Then object 3 is moved along 

the Z-direction by an amount equal to c23 and a clash-free arrangement is obtained as shown in the following 
figure. 

• It is worth highlighting that in the developed algorithm there are provisions for selecting the object and the 
direction along which the selected object has to be moved. 



Analysis Module: Drag Estimation 

• Two numerical approaches have been employed to estimate the drag of the designed vehicle: 
 - Empirical estimation 
 - CFD analysis 

 

• Empirical method: 
 The bare hull skin friction drag coefficient (CF) as a function of Reynolds number (Rn), is found using the 1957 

ITTC (International Towing Tank Conference) correlation line as, 
 
 
  
 where Rn is the Reynolds number and can be found as, 
  
 
  
 where ρ is the density of the fluid, V is the velocity, l is the overall length and µ is the dynamic viscosity. 
  
 Three methods: Virginia Tech (VT), MIT and G&J methods are employed in this study to compute the 

coefficient of viscous resistance (CV ) in three different ways, and the maximum drag value is chosen for 
further study. 
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Analysis Module: Drag Estimation 

 According to G&J method, the coefficient of the viscous resistance, CV , for the smooth bare hull can be found as, 
  
 
 
 where d is the maximum body diameter 
 The VT method takes into account the effects of nose and tail shape variation coefficients, nn and nt respectively as, 
  
 
 
 In MIT method, the prismatic coefficient, CP , has been used to find the CV as, 
  
 
 
 where Venv is the displacement volume of the vehicle. Then, 
 
 
 
 Then the vehicle drag, D can be calculated as, 
  
 
 where S is the wetted surface area of the vehicle. 
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Analysis Module: Drag Estimation 

• CFD analysis: 
 The current work presents a 3D calculation of the total drag for the UUV. The adopted methodology and the 

pre-processing for the CFD analysis are: 
 

 Model building and flow domain: 
- The bare hull shape is produced in CATIA based on the hull parameters and exported to ICEM CFD 

as a step file for meshing. 
- In case of an axisymmetric UUV, quarter model of the bare hull is considered for CFD analysis in 

order to reduce the computational costs. 
 

 Mesh generation: 
- After defining the model and the far field, the solution domain is decomposed into appropriate 

number of locations based on the accuracy of the results required. 
- Mesh is generated using ICEM CFD Meshing software.  
- To automate the mesh generation process, scripting is done for the ICEM CFD written in Tcl/Tk 

language. The main steps for automated mesh generation process are: 
 Import the geometry (CATIA generated .stp) file 
 Repair the geometry (build topology) 
 Define the flow domain and the fluid material point 
 Define the surfaces of the flow domain and the geometry, such as inlet, outlet, side walls, 

symmetry planes, vehicle body, etc 
 Define the mesh parameters 
 Build mesh and check mesh 
 Export the mesh with boundary conditions as a ‘.msh’ file 



Fig. Typical illustration of the CFD analysis 

(a) Mesh of the flow domain (b) Dense mesh near the stern (c) Boundary layer grid 

Analysis Module: Drag Estimation 

 Model selection and simulation: 
- When the computational domain is meshed, the flow is solved using the software ANSYS FLUENT.  
- To automate the problem setup and the solution process, another script file has been written to 

run the program in batch mode. The main steps for the solution process are: 
 Import the ICEM CFD generated mesh (.msh) file 
 Check the mesh 
 Select the model, e.g. k − ε model 
 Define the cell zone conditions and flow material, e.g. water-liquid 
 Define the boundary conditions 
 Define the solution methods and convergence criteria 
 Initialize the solution 
 Run calculation 
 Export the drag results 



Optimization Module 

• The design optimization framework is embedded with a suite of state-of-the-art optimization algorithms, 
namely: 

 - Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002) 
 - Infeasibility Driven Evolutionary Algorithm (IDEA) (Singh et al. 2008) 
 - Infeasibility Empowered Memetic Algorithm (IEMA) (Singh et al. 2010) 
 

• It is worth mentioning that any optimization algorithm capable of solving single and multi-objective 
optimization problems can be used within the framework. 

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE 
Transactions on Evolutionary Computation, 6 (2), pp. 182–197, 2002. 
 

Singh, H.K., Isaacs, A., Ray, T., and Smith, W., “Infeasibility Driven Evolutionary Algorithm (IDEA) for Engineering Design 
Optimization,” 21st Australasian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence, Auckland, 
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Fig. A diagram showing the interaction among modules and the flow of data from one application to 
the next for the design optimization framework 



Process of the Design Optimization 

• The design optimization process starts with a set of design variables that is fed into the optimization 
module. 
 

• The optimizer generates candidate design with the values of design variables within the bound that are 
subsequently used to generate the hull form geometries. 
 

• The geometry and configuration modules not only generate the external hull geometry but also place the 
internal on-board components in a clash-free state. 
 

• Once the internal parts are placed in a clash free state, the parallel middle body is generated automatically 
covering the internal arrangement, and then nose, rear propeller and tail cone are attached along with the 
mid-body, thereby generating the complete vehicle shape. 
 

• The performance of the candidate  design is evaluated and then used by the optimizer. 
 

• The process essentially involves two level of fidelity models: low fidelity model (empirical-in-loop) and high 
fidelity model (CFD-in-loop). 

 - low fidelity simulations are less time consuming but could be less accurate. 
 - high fidelity simulations are often more time consuming, however, more accurate. 
 

• In the present study, for CFD-in-loop process, Matlab is interfaced with CATIA and the CFD software ANSYS 
through scripting. 



Design for Multiple Classes 

Design Optimization of a Model Submarine : Toy Sub 
Approach 1: Optimization using Low and High fidelity Models 

Approach 2: Robust Design Optimization 



Toy Sub: Design Requirements 

• Operating speed should be 0.5 m/s 
 

• No longer than 500 mm 
 

• Total weight be less than or equal to 500 g 
 

• The vehicle to be propelled by one rear propeller of dimension 30×30×80 mm and two 
propellers each for pitch and yaw movements, respectively, of dimension 70×35×30 mm each. 
The individual weight of the rear propeller and the propellers for pitch and yaw movements is 
same, and the value is 30 g 
 

• Should have enough free space to carry a controller and a battery unit of dimensions 
38×38×20 and 70×38×35 mm, respectively. The weights of the controller and battery units 
are 45 and 120 g, respectively. 



Toy Sub: Hull Geometry 

Fig. Parameterization of the vehicle geometry 

• Equation of the nose: 
 
 
 
 where rn is the radius of the nose, d is the maximum body diameter, which may be varied, ln is the length 

of the nose, xn is the reference length that varies from 0 to ln, and nn is the shape variation coefficient of 
the nose which may also be varied to give different shapes of the nose. 
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Toy Sub: Propulsion System 

• The propulsion of the toy submarine is achieved through the use of three propeller units: 
 - One is for vertical movement: up and down 
 - One is for lateral movement: left and right 
 - One is to propel the vehicle: forward and backward 

Fig. Configuration of the propulsion system 



Approach 1: Optimization Using Low and High Fidelity Models 
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Fig. The constraints and design variables for 
problem formulation 

• Single Objective Optimization Problem Definition 

• The numerical simulation can be run at two level of fidelity models dictated by the accuracy of drag estimation. 
• The  computing time per evaluation for low and high fidelity models is about 0.05 s and 347.54 s respectively, 

on a Intel Xeon processor machine of 3.33 GHz with 6.00 GB memory. 



Approach 1: Results 

Drag Empirical-in-loop CFD-in-loop 

Best (N) 0.0848660 0.1003834 

Mean (N) 0.0854686 0.1039560 

Median (N) 0.0855750 0.1048310 

Worst (N) 0.0858490 0.1057080 

SD (N) 0.0004181 0.0021912 

Table: Single objective drag minimization results 

(a) Best design 

(b) Median design 

Fig. Progress plots of the best and median designs using IDEA 



Approach 1: Results 

(a) Design-I (b) Design-II 

Fig. Longitudinal sections of the designed toy submarines 

(a) Design-I (b) Design-II 

(a) Design-I (b) Design-II 

Fig. CATIA models of the designed toy submarines 

Fig. Configurations of the designed toy submarines 

• The best solutions of the two fidelity models are referred as the Design-I (best solution of the empirical-in-loop 
analysis) and Design-II (best solution of the CFD-in-loop analysis) toy submarines. 



Approach 1: Results 

• An example of a similar existing submarine available in the market is USS Dallas RC toy submarine. 
• This model submarine has independent propellers to allow it to ascend, descend, turn and move forward and 

backward. 
• The designs identified through the process of optimization are compared with the existing toy submarine to 

highlight the benefits offered by the present approach. 

Fig. USS Dallas RC toy submarine Fig. Configuration of the USS Dallas RC toy submarine 



Approach 1: Results 

Vehicle particulars USS Dallas Design-I Design-II 

Nose length 45 mm 68 mm 63 mm 

Mid-body length 210 mm 242 mm 248 mm 

Tail length 95 mm 80 mm 80 mm 

Length overall 350 mm 390 mm 391 mm 

Outer diameter 60 mm 58 mm 58 mm 

L/D ratio 5.8 6.7 6.7 

Wetted surface area 0.082385 m2 0.088521 m2 0.088513 m2 

Displacement volume 0.000437 m3 0.000493 m3 0.000480 m3 

Displaced water mass 437 g 493 g 480 g 

Total mass of the vehicle 430 g 442 g 441 g 

First lever arm length 45 mm 45 mm 45 mm 

Second lever arm length 90 mm 112 mm 112 mm 

CG-CB separation 3.705 mm 3.729 mm 1.123 mm 

Nominal speed 0.5 m/s 0.5 m/s 0.5 m/s 

Drag (Empirical  estimation) 0.0825860 N 0.0848660 N 0.0847710 N 

Drag (CFD analysis) 0.1065059 N 0.1184621 N 0.1003834 N 

Table: Performance criteria of the existing USS Dallas RC toy, Design-I and Design-II submarines 



Approach 1: Results of CFD Analyses 

• CFD analysis provides not only an accurate simulation of the flow around the vehicle but also a useful 
understanding of the fluid-structure interactions. 

(a) Design-I (b) Design-II 

Fig. Pressure contours around the surfaces of the designed toy submarines 

(a) Design-I (b) Design-II 

Fig. Velocity contours around the surfaces of the designed toy submarines 



Approach 2: Robust Design Optimization 

• An optimal design is often of less practical use if its 
performance is likely to degrade significantly under 
expected variations in variables or operating conditions. 

• Furthermore, often such optimal designs lie on 
constraint boundaries which tend to fail or become 
unsafe under such expected variations. 

• Therefore, for a practical design, there is a need to 
identify optimum solutions to the constrained robust 
optimization problem 

• The framework is subsequently used to identify optimal 
and robust optimal designs of a small-scale (length 
nominally less than 500 mm) and light-weight (less than 
0.5 kg) toy submarine. Fig. Illustration of Type II robust design optimization 

Alam, K., Ray, T., and Anavatti, S., “A new robust design optimization approach for unmanned underwater vehicle design,” Proc 
IMechE Part M: Journal of Engineering for the Maritime Environment, 226(3), pp. 235-249, 2012. 



Approach 2: Problem Formulations 
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- To assess the robustness of a solution, a 2% uniform variation is considered for each variable and the mean 
objective value is computed using 100 solutions within the above neighbourhood. 

- The objective function is the minimization of mean value of the drag. In addition to the constraints listed 
above, three additional constraints, i.e. number of violations (Ng) in each of the constraints among the 
neighbouring solutions, are considered. The design variables are the same as for single objective 
optimization problem. 

0)8(;0)7(;0)6(
4)5(;90)4(;45)3(

500)2(;500)1(
:

)1(
:

321

21

≤=≤=≤=
≤=≥=≥=

≤=≤=

=

ggg

m

NgNgNg
mmsgmmLAgmmLAg

gwgmmlg
toSubject

Df
Minimize



Approach 2: Results 

Design Optimum Robust 

Best (N) 0.082177 0.0921119 

Mean (N) 0.083828 0.0979447 

Median (N) 0.084119 0.1000550 

Worst (N) 0.086806 0.1207190 

SD (N) 0.000892474 0.0071278 

Table: Single objective drag minimization results 

Fig. Progress plot of the best for robust design optimization 

Fig. Progress plot of the best design of optimization approach 



Approach 2: Results 

(a) Optimal solution (b) Robust solution 

Fig. Longitudinal sections of the resulting toy submarines 

(a) Optimal solution (b) Robust solution 

(a) Optimal solution (b) Robust solution 

Fig. CATIA models of the resulting toy submarines 

Fig. Configurations of the resulting toy submarines 



Approach 2: Results 

f fmean(100) fmean(1000) 
Ng (100 func. evals.) Ng (1000 func. evals.) 

Ng1 Ng2 Ng3 Ng1 Ng2 Ng3 

Optimum 0.082177 N 0.139804 N 0.137531 N 18% 48% 7% 11.9% 48.6% 6.2% 

Robust 0.092112 N 0.093548 N 0.093492 N 0 0 0 0 0 0 

Table: Comparison of optimization and robust solutions for perturbation of design variables 

• The results of the assessment for the robustness of the optimal and robust solutions for 100 and 1000 
neighbours are reported in the above Table. 
 

• It can be seen that the performance of the optimal solution degrades significantly, as the average drag values are 
70% and 67% higher than the true optimal value for 100 and 1000 neighbours respectively. 
 

• At the same time, the percentages of the number of violations (Ng) of each of the design constraints are 
noteworthy. 
 

• On the other hand, the robust solution offers a better average performance and satisfies all the design 
constraints under the same perturbation, which is expected. 



Vehicle particulars USS Dallas Optimum Robust 

Nose length 45 mm 41 mm 62 mm 

Mid-body length 210 mm 231 mm 307 mm 

Tail length 95 mm 80 mm 78 mm 

Length overall 350 mm 360 mm 447 mm 

Outer diameter 60 mm 58 mm 58 mm 

L/D ratio 5.8 6.2 7.7 

Wetted surface area 0.082385 m2 0.082624 m2 0.102018 m2 

Displacement volume 0.000437 m3 0.000433 m3 0.000598 m3 

Displaced water mass 437 g 433 g 598 g 

Total mass of the vehicle 430 g 428 g 475 g 

First lever arm length 45 mm 48 mm 71 mm 

Second lever arm length 90 mm 90 mm 143 mm 

CG-CB separation 3.705 mm 2.828 mm 2.171 mm 

Nominal speed 0.5 m/s 0.5 m/s 0.5 m/s 

Coefficient of viscous drag (MIT method) 0.008095 0.0079567 0.0072232 

Drag (MIT method) 0.0825858 N 0.0821771 N 0.0921119 N 

Table: Performance criteria of the existing USS Dallas RC toy, optimum and robust submarines 

Approach 2: Results 



Design for Multiple Classes 

Design and Development of a Small, Low Cost UUV 
for Shallow Water Operations : White Sub 



White Sub: Introduction 

• Small UUV for shallow water operations 
 

• Capable of supporting underwater communications research 
 

• Relies heavily on the use of off-the-shelf components 
 

• Modular configuration to adopt future enhancements 
 

• Low cost 

Gover, N., Hill, C., Alam, K., Ray, T., and Anavatti, S., “Design and development of a small, low-cost UUV for shallow water 
operations,” In Proceedings of the 1st Submarine Institute of Australia Technology Conference, Adelaide, Australia, pp. 265-
271, 2011. 



White Sub: Design Requirements 

Design Specifications 

Performance Appearance 

6 Degree of freedom movements Streamlined shaped  

Maximum forward velocity of 1 m/s No external appendages 

Endurance of 20 mins at 1 m/s Length overall to be less than 0.5 m 

Range of 15 m Fineness ratio (L/D) > 5 

Remote controlled operations Easily maintainable 

Maximum operating depth of 5 m Minimum watertight seals 

Calm water operation Fabrication 

Maximum payload capacity of 1 kg Production capability 

Minimum payload compartment of 20X70X70 mm Production of a prototype vehicle 

Total weight to be less than 6 kg Budget 

Unspecified climb, dive and turn rates Per unit < 1000 AUD 



White Sub: Preliminary Design 

Vehicle Particulars 

Thickness (wall) 3.0 mm Weight of the bow 0.607 kg 

Outer diameter 110 mm Weight of the body 0.689 kg 

Inner diameter 104 mm Weight of the stern 0.405 kg 

Bow length 205 mm Total weight 1.701 kg 

Body length 255 mm Total surface area 0.268 m2 

Stern length 204 mm Total internal volume 0.002 m3 

Length overall 664 mm Mass displaced (Fresh 
water) 2.094 kg 

L/D ratio 6.04 Mass displaced (Salt 
water) 2.146 kg 



White Sub: Performance Analysis of the Preliminary Design 

Flow 
Speed 
(m/s) 

Forward Motion Vertical Motion 

Drag (N) Drag (N) 

Pressure Viscous Total Pressure Viscous Total 

0.5 1.9512 0.0718 2.0230 7.1932 0.2187 7.4119 

1.0 7.8183 0.2245 8.0428 28.1286 0.1135 28.2421 

1.5 17.6066 0.4427 18.0493 64.6425 0.6812 65.3237 

2.0 31.3177 0.7191 32.0368 114.902 1.0949 115.997 

Fig. CFD analysis of the preliminary design 

(a) Forward motion 

(b) Vertical motion 

- Unable to meet the design specification of 1 m/s in forward motion, as  the drag incurred by the vehicle is 
higher than that of the available thrust of 5 N. 



White Sub: Performance of the Preliminary Design 

Design Specifications 

Performance Appearance 

6 Degree of freedom movements √ Streamlined shaped  √ 

Maximum forward velocity of 1 m/s × No external appendages √ 

Endurance of 20 mins at 1 m/s √ Length overall to be less than 0.5 m × 

Range of 15 m √ Fineness ratio (L/D) > 5 √ 

Remote controlled operations × Easily maintainable √ 

Maximum operating depth of 5 m × Minimum watertight seals √ 

Calm water operation × Fabrication 

Maximum payload capacity of 1 kg × Production capability √ 

Minimum payload compartment of 20X70X70 mm √ Production of a prototype vehicle × 

Total weight to be less than 6 kg √ Budget 

Unspecified climb, dive and turn rates √ Per unit < 1000 AUD √ 



White Sub: Detailed Design 

Vehicle Particulars 

Thickness (wall) 3.0 mm Weight of the nose 0.308 kg 

Outer diameter 110 mm Weight of the PMB 
module 2.908 kg 

Inner diameter 104 mm Weight of the FRT module 1.056 kg 

Nose cone 110 mm Weight of the tail 0.310 kg 

PMB module 600 mm Total weight 4.582 kg 

FRT module 151 mm Total surface area 0.340 m2 

Tail cone 100 mm Total internal volume 0.007 m3 

Length overall 961 mm Mass displaced (Fresh 
water) 6.977 kg 

L/D ratio 8.74 Mass displaced (Salt 
water) 7.151 kg 



White Sub: Performance Analysis of the Detailed Design 

Fig. CFD analysis of the detailed design 

(a) Forward motion 

(b) Vertical motion 

Fig. Comparison of drag between preliminary 
and detailed designs 

(a) Forward motion 

(b) Vertical motion 



White Sub: Performance of the Detailed Design 

Design Specifications 

Performance Appearance 

6 Degree of freedom movements √ Streamlined shaped  √ 

Maximum forward velocity of 1 m/s √ No external appendages √ 

Endurance of 20 mins at 1 m/s √ Length overall to be less than 0.5 m × 

Range of 15 m √ Fineness ratio (L/D) > 5 √ 

Remote controlled operations √ Easily maintainable √ 

Maximum operating depth of 5 m √ Minimum watertight seals √ 

Calm water operation √ Fabrication 

Maximum payload capacity of 1 kg √ Production capability √ 

Minimum payload compartment of 20X70X70 mm √ Production of a prototype vehicle √ 

Total weight to be less than 6 kg √ Budget 

Unspecified climb, dive and turn rates √ Per unit < 1000 AUD × 

• The detailed design has met all the design specifications except length overall and budget. The 
overall length of the final design is 0.961 m and cost per unit is 2300 AUD. 



White Sub: Fabrication 



Design for Multiple Classes 

Design Optimization of a Micro Unmanned 
Underwater Vehicle (µUUV) : Six Inch Sub 



Six Inch Sub: Introduction 

• Limited attention has been paid towards micro UUV 
 

• Micro UUVs are particularly attractive for deployment 
in extraordinarily confined spaces 
 

• Can easily be transported to location and launched 
with little effort and minimum logistical support 
 

• Multiple miniature vehicles could be deployed by a 
larger submersible to perform a task in collaboration 
 

• Design optimization of a micro UUV to evaluate best 
design has not gain much attention by the researchers 

Fearnley, J., and Ray, T., “Design and development of a six inch sub,” In Proceedings of the 1st Submarine Institute of Australia 
Technology Conference, Adelaide, Australia, pp. 273-279, 2011. 
 

Alam, K., Ray, T., and Anavatti, S., “Design optimization of a micro unmanned underwater vehicle (µUUV),” School of Engineering 
and Information Technology, UNSW Canberra, 2013. 
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Six Inch Sub: Design Requirements 

• Operating speed of the UUV should be 0.2 m/s 
 

• Length of the UUV must be no more than 152.4 mm (6 inch) 
 

• Should be able to house a camera of 2.87E4 mm3 volume and radius of 19 mm 
 

• The vehicle is to be propelled by one rear propeller and two propellers for yaw movement. The 
pitch movement will be achieved through linear actuator and syringe mechanism 
 

• Should have enough space to carry a controller and a battery unit 
 

• The UUV must be able to store lead shot for ballast and weight in order to balance the buoyant 
force for underwater use 
 

• Should maintain a modular configuration for easy access to the internal components and be 
reconfigured to suit various mission requirements 



Six Inch Sub: Hull Geometry 

Fig. Parameterization of the hull geometry 

• Equation of the nose: 
 
 
 
 where yn is the radius of the nose, d is the maximum body diameter, which may be varied, ln is the length 

of the nose, xn is the reference length that varies from 0 to ln, and nn is the shape variation coefficient of 
the nose which may also be varied to give different shapes of the nose. 

 
• Equation of the tail: 
 

 
 where yt is the radius of the tail and xt is the reference length that varies from 0 to lt. 
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Six Inch Sub: Internal On-board Components 

Fig. Internal on-board components to be used for the vehicle design 

• The submarine employs a propeller for surge control, two small propellers rotating about the vertical axis 
for yaw control and a hydrostatic displacement changing system for vertical displacement. 

 

• The AAA size NiMH batteries with nominal cell voltage of 3.6 V are used as the power source. 
 

• The image capturing capability of the UUV will be achieved by a standalone digital video recording (DVR) 
‘spy’ camera which will be positioned forward most for visibility. 



Six Inch Sub: Hydrostatic Displacement Changing System 

• The displacement changing system utilizes a geared stepper motor-actuated syringe mechanism which adjusts 
the displacement of the submarine. 

• The syringe cavity is designed to run horizontally and positioned as far forward as possible without clashing 
with the camera to increase the induced pitch. 

• The cavity is considered as half full at the state of neutral buoyancy. When the syringe is extended, the face of 
the syringe is flush with the hull of the submarine and this state gives positive buoyancy. 

• As the syringe face is brought back inside the submarine, the vehicle’s displacement decreases and its 
buoyancy consequently decreases giving negative buoyancy. 

• This change of attitude means that when the submarine tries to ascend or descend, the camera can see the 
direction in which it is heading and also the thrust can be used to increase the rate of ascent. 

Fig. Hydrostatic displacement changing system induced pitch schematic Fig. Micro eyes ball camera 



Six Inch Sub: Problem Formulation 
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Fig. The constraints and design variables for 
problem formulation 



Six Inch Sub: Results 

Drag IDEA 

Best 0.008178 N 

Mean 0.008178 N 

Median 0.008178 N 

Worst 0.008183 N 

SD 9.12871E-7 N 

Fig. Progress plot of the best design for single 
objective drag minimization using IDEA 

Table: Single objective drag minimization results 



Six Inch Sub: Results 

Vehicle Particulars 

Nose length 40 mm Total mass of the vehicle 172.17 g 

Mid-body length 78 mm Max. inner square size 34.02 mm 

Tail length 34.4 mm First lever arm length 37.44 mm 

Length overall 152.4 mm Second lever arm length 38.41 mm 

Outer diameter 51.1 mm CG-CB separation 3.88 mm 

L/D ratio 2.98 Nominal speed 0.2 m/s 

Wetted surface area 0.021611 m2 Drag (VT method) 0.006338 N 

Displacement volume 0.000247 m3 Drag (G&J method) 0.006733 N 

Displaced water mass 0.247 kg Drag (MIT method) 0.008178 N 

Fig. Bare hull of the best design 

Fig. Internal image of the final design 

Table: Performance criteria of the optimized six inch sub 



Six Inch Sub: Fabrication 



Benefits of the Framework 

• Novelty: The framework is the first of its kind to offer full multidisciplinary design optimization functionalities 
to be considered in the design of UUVs. 
 

• Modularity: The modular design optimization framework is reconfigurable to suit various design requirements. 
 

• Robustness: To deliver practical designs, the formulations have been extended to yield robust optimal designs. 
 

• Interfacing: Seamless integration of Matlab-CATIA-ANSYS (ICEM, FLUENT) and in-house performance analysis 
codes. 
 

• The framework has been used to design and build a number of UUVs to support underwater communications 
research. 



Application Snapshot: Scramjet Shape 



Design Optimization of Scramjet Geometries 

ηc 

Full Flow-Path Design Optimization and Analysis of Axisymmetric Scramjets. Funded by Australian Space 
Research Program. 

 

Ogawa,H. Brown,L. Boyce,R.R., and Ray,T.,  Multiobjective 
Design Optimization of Axisymmetric Scramjet Nozzle and 
External Components Considering Static Stability by using 
Surrogate Assisted Evolutionary Algorithms, International 
Society of Air-breathing Engines, ISABE 2011, September 12-
16, 2011 Gothenburg, Sweden. 



Application Snapshot: Planning Craft  



Framework for Design Optimization of High Speed Craft 

1. A library of optimization algorithms 
2. Surface information retrieval modules 
3. Parametric transformation module 
4. Hydrostatics and hydrodynamics module 

Mohamad, A.F.A., Ray, T., and Smith, W.(2011), Uncovering 
Secrets Behind Low Resistance Planing Craft Hull Forms Through 
Optimization, Engineering Optimization.iFirst, 2011, pp. 1-13. 



 Non-uniform rational b-splines (NURBS) has been acknowledged as a well accepted standards in surface 
representation. 

 Its simple, elegant surface representation are now a norm among various CAD tools e.g. AutoCAD, 
Maxsurf, Friendship Framework etc. 

 Such an approach requires: Control points, Knot vectors, Order of the curve/surface and the Basis 
function. 

 Mathematically it can be represented as  
 where D is the resulting surface, N is the basis function and Q denotes the control points. 
 

Shape Representation 

The fitting error can be estimated as above. 



Shape Representation 

Fitting the surface all at once 

 Mohamad, A.F.A. , Ray, T. , and Smith, W. , “Uncovering secrets 
behind low resistance planing craft hull forms through 
optimization,” Engineering Optimization, vol. 43, no. 11, 
November, pp. 1161–1173, 2011 



Shape Representation 

 Fitting the multiple surfaces., especially when 
there is a chine(discontinuity). 

 Mohamad, A.F.A. , Ray, T. , and Smith, W. , “A hydrodynamic preliminary 
design optimization framework for high speed planing craft,” Journal of 
Ship Research, vol. 56, No. 1, pp. 35–47, 2012. 

  
  



Shape Representation 

Surface information retrieval of a DTMB 5415 (destroyer craft) 

Mohamad, A.F.A. , Ray, T. , and 
Smith, W. , “Beyond hydrodynamic 
design optimization of planing craft,” 
Journal of Ship Production and 
Design, vol. 27, no. 1, pp. 1–13, 
2011. 



Background of the planing craft 

 The planing craft used in this study represents a craft similar 
to U.S. Coast Guard (USCG) Surf Rescue Boat (30-foot SRB) 
(Halberstadt (1987)). The ship is designed to operate in sea 
up to 3 m waves, with a maximum speed of 30 knots.  

Displacement  7204.94 kg 
Length  10.04 m 
Beam  2.86 m 
Draft  0.7 m 
Metacentric height 
(GM)  

2.0 m 

Speed  20.81 kts 
CV = V/(g x B)1/2 2.02                                                 

Characteristics of the planing craft  

USCG 30 foot SRB Halberstadt (1987))  

Basis hull used in the case study 

Planing  Craft Design: Case Study 1 



Problem formulation 
– The optimization problem is posed as the identification of a planing craft with minimum total 

resistance subject to the constraints on displacement, stability (transverse metacentric height) and 
impact acceleration corresponding to the operational sea-states.  

Minimize:  
f = RT, where RT = RC + RA 
  
Design variables:  
9m<L<11m (LB=10.04m) ;  
1.8m<B<3.8m (BB=2.862m) ;  
0.6m<T<0.8m (TB=0.7m) 
  
Constraints:  
g(1) : DispI > DispB ;         g(2) : GMI ≥ GMB ;   
g(3) : 3.07 < LI/VolI1/3 < 12.4 ;    g(4) :  3.7o < IeI <   28.6o;   
g(5) :  2.52 < LI/BI <   18.28 ;     g(6) :  1.7 < BI/TI <   9.8; 
 

Nomenclature:  
RT = Total resistance 
RC = Calm water resistance 
RA = Added resistance due to waves 
L   = Length 
B   = Beam 
T    = Draft 
Disp= Displacement 
GM  = Transverse metacentric height 
Vol   = Displaced volume  
IeI     = Half angle of entrance  

 
Subscript I: Candidate design 
Subscript B: Basis design 

For each algorithm (NSGA-II, IDEA and EASDS), 10 independent runs are performed. A population size of 40, crossover 
probability of 1, mutation probability of 0.1, crossover distribution index of 10, and mutation distribution index of 20 were 
used for each algorithm. The number of function evaluations used by each algorithm is kept approximately equal for a fair 
comparison. The surrogate models used are restricted to RSM, ORSM, RBF, ORBF and DACE. A training period of 3 and 
prediction error of 0.05 has been used for EASDS. 
 

Planing  Craft Design 



 Mathematical expressions & design tools for the planing craft design optimization framework: 
 Hydrostatics (displacement, stability) 
 Savitsky (1964) regression equations for calm water resistance estimation 
 Savitsky and Ward Brown (1976), Savitsky and Koelbel (1993)  expressions derived from Fridsma's 

(1971) experimental tank test data on planing craft operating in rough water for added resistance 
due to waves and vertical impact acceleration estimation. 

 Lackenby (1950) and Maxsurf (2007) parametric transformation method. 
 Mohamad Ayob et al. (2009) surface information module, based on the inverse B-spline method, 

Rogers and Adams (1990) 

Planing  Craft Design 



Matlab 
(The 

Mathworks) 

Maxsurf 
(Formsys 

Inc.) 

Microsoft 
COM 

Automation 

Incorporation of Commercial Codes / 
Analysis Tools  

Planing  Craft Design Framework 



 A hydrodynamic optimization framework for a hard chine planing craft in seaway operations is presented 
in this work. The proposed framework incorporates three evolutionary algorithms, namely NSGA-II, EASDS 
and IDEA.  
 

 The hull form optimization problem is formulated through minimization of RT in four sea-states, with H1/3 
of 0.4m, 0.6m, 0.8m and 1.1m with and without vertical impact acceleration constraints to illustrate 
scenarios for manned and unmanned missions.  
 

 The framework allows an easy integration of various analysis modules of varying fidelity. The ability to 
generate an optimum hull form rather than the optimum principal dimensions allows for a better estimate 
of performance, while at the same time providing offsets directly to support other detailed analysis and 
even direct construction.  

  
 The inclusion of surrogate models through EASDS allows the possibility to identify better designs for the 

same computational cost as highlighted in the case studies. The proposal to accelerate the rate of 
convergence through the use of IDEA for constrained optimization problems is also illustrated. The 
importance and effects of the impact acceleration constraint on manned and unmanned missions are 
discussed.  

 
 The proposed framework being modular in nature, allows for the possibility of including other underlying 

optimization schemes or high fidelity multidisciplinary analysis tools to support design of hard chine 
planing crafts. 
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Coastal surveillance scenario setting 

Sea-state H1/3 (m) 
Sea-state 3 1.34 
Sea-state 4 2.32 
Sea-state 5 3.62 

Sea-states based on Pierson-Moskovitz 
energy spectrum can be derived from wind speed data on a 
particular coastal area or available recorded data. 

• Design the vessel for minimum total resistance at Sea states 3, 4 and 5. 
• The boxes surrounding Australian map are the ‘Definition of Areas’ by Hogben et. al., (1986).  
• It is assumed that the ship will operates in northern Australian waters.  Realistic estimation can be made 

form the work of Hogben et. al., (1986). 

 
 

Hogben, N., Dacunha, N. M. C. and Olliver, G. F.: Global Wave 
Statistics: compiled and edited by British Maritime Technology, 
British Maritime Technology, 661 pp. (1986). 

Planing  Craft Design: Case Study B 



The performance of WPB110 in sea-states 3, 4, 5 are as follows: 

  Sea –state 3 Sea –state 4 Sea –state 5 
Displacement (N) 118246.596 118246.597 118246.596 

LWL (m) 32.930 32.930 32.930 

Beam (m) 7.518 7.518 7.518 

Draft (m) 1.600 1.600 1.600 

GMt (m) 1.638 1.638 1.638 
Calm Water Resistance (N) 135932.36 135932.36 135932.36 

Deadrise Angle  31.860 31.860 31.860 

Running Trim 3.760 3.760 3.760 

Speed (knots) 30 30 30 

Sig Wave Height 1.340 2.320 3.620 

Added Resistance (N) 40700.979 52414.029 65498.889 

Impact Acc. (g) 0.754 1.128 1.625 

Total Resistance (N) 176633.339 188346.389 201431.249 

Is it possible to design better 
forms  than WPB110 for Sea 
states of 3, 4 and 5 ? 

Planing  Craft Design: Performance if WPB110 



Best design across ten runs 
NSGA-II EASDS IDEA 

Sea State 3  Avg. Num. of Fun.Eval. 720 688.4 720 
% of Minimized Resistance 7.35 7.71 7.74 

Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 
% of Minimized Resistance 5.69 5.94 6.11 

Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 
% of Minimized Resistance 4.19 4.02 3.99 

NSGA-II EASDS IDEA 
Sea State 3  Avg. Num. of Fun. Eval. 720 688.4 720 

% of Minimized Resistance 6.96 7.37 7.39 
Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 

% of Minimized Resistance 5.08 4.61 5.53 
Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 

% of Minimized Resistance 3.41 3.89 3.63 

Median design across ten runs 

NSGA-II EASDS IDEA 
Sea State 3  Avg. Num. of Fun.Eval. 720 688.4 720 

% of Minimized Resistance 5.59 5.81 6.35 
Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 

% of Minimized Resistance 2.90 3.88 4.58 
Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 

% of Minimized Resistance 2.51 2.77 2.71 

Worst design across ten runs 

Planing  Craft Design: Comparision of Results across Multiple Algorithms 



Ship optimized at calm water only VS ship optimized at Sea State 4 (EASDS results) 

OPT @ Calm % reduction OPT @ SS4 % reduction 

Analysed @ Calm Water (N) 122488.78 9.89 122600.45 9.81 

Analysed @ SS3 (N) 163684.45 7.33 162633.71 7.93 

Analysed @ SS4 (N) 178663.11 5.14 177165.88 5.94 

Analysed @ SS5 (N) 195514.33 2.94 193515.58 3.93 

Each optimized ship is compared with 
the respective basis ship operating at the 

respective sea-states 

A significant difference is observed 
between ship optimized in calm water 

only and ship optimized in sea-state 
condition. 

Why Identifying an Optimum Design based on Calm Water Resistance is Not Enough ? 

Planing  Craft Design 



Best design across ten runs NSGA-II EASDS IDEA 
Sea State 3  Avg. Num. of Fun.Eval. 720 688.4 720 

% of Minimized Resistance 7.35 7.71 7.74 
Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 

% of Minimized Resistance 5.69 5.94 6.11 
Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 

% of Minimized Resistance 4.19 4.02 3.99 

NSGA-II EASDS IDEA 
Sea State 3  Avg. Num. of Fun. Eval. 720 688.4 720 

% of Minimized Resistance 6.96 7.37 7.39 
Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 

% of Minimized Resistance 5.08 4.61 5.53 
Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 

% of Minimized Resistance 3.41 3.89 3.63 

Median design across ten runs 

NSGA-II EASDS IDEA 
Sea State 3  Avg. Num. of Fun.Eval. 720 688.4 720 

% of Minimized Resistance 5.59 5.81 6.35 
Sea State 4  Avg. Num. of Fun.Eval. 880 856.6 880 

% of Minimized Resistance 2.90 3.88 4.58 
Sea State 5  Avg. Num. of Fun.Eval. 760 744.3 760 

% of Minimized Resistance 2.51 2.77 2.71 

Worst design across ten runs 

Given the same approximate number of 
function evaluations, IDEA consistently reports 
better percentage of reduction in all runs 

However, less than 10% of reduction can be 
achieved in this case study. 

This case study might suggest that the design of 
a typical coast guard planing craft could have 
been well designed for seaway operation. 

Planing Craft Design: Case 2 



Application Snapshot: Miscellaneous 



Approach: With and without surrogates 

M = 3.02 M = 8.04 

Base Design 0.2601 0.3001 

Without Surrogate 0.2565 (1.39%) 0.2942 (1.96%) 

With Surrogate 0.2569 (1.21%) 0.2977 (0.80%) 

Computational Saving 18% 11% 

 Deepak, R., Ray. T. and Boyce, R. Evolutionary Algorithm Shape 
Optimization of a Hypersonic Flight Experiment Nose Cone, 
Journal of Spacecrafts and Rockets, 45 (3), pp. 428-437,2008. 

Nose Cone Shape Optimization 



21651.2Median EA3660.77Median EA

21622.3Average EA3660.20Average EA

21222.4Worst EA3653.90Worst EA

22033.4Best EA3663.99Best EA

21789.9Buitrago et al.3629.00Buitrago et al.
Fifty Six WellSix Well

21651.2Median EA3660.77Median EA

21622.3Average EA3660.20Average EA

21222.4Worst EA3653.90Worst EA

22033.4Best EA3663.99Best EA

21789.9Buitrago et al.3629.00Buitrago et al.
Fifty Six WellSix Well

An Increase of 243 Barrels per Day for 56 Oil Well Problem (Benchmark Problem) 

 Ray,T. and Sarker, R. Genetic Algorithm for Solving a Gas Lift Optimization Problem, Journal of 
Petroleum Science and Engineering, Vol. 59, pp. 84-96, 2007. 

 Ray,T. and Sarker,R., Evolutionary Algorithms Deliver Promising Results to Gas Lift Optimization 
Problems, World Oil, April 229 (4), pp. 141-142, 2008. 

Optimal Gas Injection Planning 



47 Kg Reduction in Total Stage Masses 

 Briggs, G.P., Ray, T. and Milthorpe, J.(2007). Optimal Design of 
an Australian Medium Launch Vehicle, Innovations in Systems 
and Software Engineering, (A NASA Journal), Springer. Vol. 3, 
pp. 105-116,2007. 

Launch Vehicle Design 



Transformation to parameter 
space 

Non-dominated solutions in x-space and f-space DOE based sampling 

K*h = 1.5 

Surrogate models for f1 and f2 as function of parameters 

Flapping Wing Design 

Find wing parameters (frequency & amplitude) to Maximize Thrust and Efficiency 



Non-dominated solutions in x-space and f-space 

Parameters Predicted Calculated 

Frequency Amplitude Thrust Efficiency Thrust Efficiency 

3.545 0.4321 0.7896 0.0997 0.7538 0.0972 

3.034 0.1403 0.0863 0.305 0.0845 0.287 

3.2728 0.1484 0.1176 0.2971 0.1171 0.2963 

Flapping Wing Design 

Ashraf, M.A., Isaacs, A., Young, J., 
Lai, J.C.S. and Ray, T. (2009) 
Numerical Simulation and Multi-
Objective Design of Flow Over 
Oscillating Airfoils for Power 
Extraction, Conference on 
Modelling Fluid Flow (CMFF’09), 
Proceedings of 14th 
International Conference on 
Fluid Flow Technologies, 
Budapest, Hungary, 9-12 
September 2009, pp. 221-228.. 

http://seit.unsw.adfa.edu.au/research/sites/mdo/pubs/Conferences/CMFF-2009.pdf


Generate a Topology of the Mechanism such that the tip in the right follows the desired path. EA coupled with 
ABAQUS. 

 Kang, T., Guang, Y. C. and Ray, T. (2002). Design Synthesis of Path Generating Compliant Mechanisms by 
Evolutionary Optimization of Topology and Shape, ASME Transactions, Journal of Mechanical Design, 
Vol. 124, September 2002, pp. 492-500. 

Topology Optimization of Compliant Mechanisms 



1dB Reduction in Bistatic RCS as compared to NACA64A410 

 Venkatarayalu, N.  and Ray, T. Application of Multi-
objective Optimization in Electromagnetic Design, Real 
World Multi-objective Systems Engineering: Methodology 
and Applications, Eds. Nedjah, N., Nova Science, NY, 2005. 

Airfoil Design with CFD and CEM Considerations 



         Venkatarayalu, N., Ray, T. and Gan, Y.B., (2005). Multilayer Dielectric Filter Design Using a Multi-objective 
Evolutionary Algorithm, IEEE Trans. On Antennas and Propagation, Vol. 53, No. 11, pp. 3625-3632, 2005.  

Bandpass Filter Design: Lower cutoff at 28 GHz and Upper cutoff at 32GHZ. Reflection coefficient is greater 
tha -5dB in stopband and less than -10dB in the passband. & layered dielectric. 

Lowpass Filter Design: Cutoff frequency of 30GHZ. 

Maximum of 15000 Design Evaluations. 

Dielectric Filter Design 



More than 1dBi improvement 

         Venkatarayalu, N.  and Ray, T. (2004). Optimum Design of Yagi-Uda Antennas Using Computational 
Intelligence, IEEE Trans. On Antennas and Propagation, Vol. 52, No. 7, pp. 1811- 1818, 2004.  

Yagi-Uda Design 



 Liew, K.M., He, X.Q, and Ray, T. (2004). Computational Intelligence in Optimal Shape Control of 
Functionally Graded Smart Plates, Computer Methods in Applied Mechanics and Engineering, Vol. 193, 
Issues 42-44, pp. 4475-4492, 2004. 
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Optimal Gain of Piezoelectric Patches 



3D Packing Mechanism 
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Design Optimization of an Underwater Vehicle 

 
 

Optimization Modules 

Non-dominated Sorting Genetic Algorithm (NSGA-II) 

Infeasibility Driven Evolutionary Algorithm (IDEA) 

Surrogate Assisted Evolutionary Algorithm (SA-EA) 

Analysis Modules 

Drag estimation 

Hydrostatics 

Hydrodynamics 

Control 

Geometry and Configuration Modules 

Internal Components 

Power sources 

Propulsion 

Payload 

Designers Requirements 

Operating Conditions 

Performance Measures 

Constraints 

External Geometry 

Nose Definition 

Middle Body Definition 

Tail Definition 

Alam, K., Singh, H.K., Isaacs, A., Ray, T. and Sreenatha G. Anavatti (2011), Design Optimization of a Model Submarine: 
A Reverse Engineering Approach, EUROGEN 2011.  



Thank You 
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